A Novel Feature Descriptor for Image Retrieval by Combining Modified Color Histogram and Diagonally Symmetric Co-occurrence Texture Pattern

نویسندگان

  • Ayan Kumar Bhunia
  • Avirup Bhattacharyya
  • Prithaj Banerjee
  • Partha Pratim Roy
  • Subrahmanyam Murala
چکیده

In this paper, we have proposed a novel feature descriptors combining color and texture information collectively. In our proposed color descriptor component, the inter-channel relationship between Hue (H) and Saturation (S) channels in the HSV color space has been explored which was not done earlier. We have quantized the H channel into a number of bins and performed the voting with saturation values and vice versa by following a principle similar to that of the HOG descriptor, where orientation of the gradient is quantized into a certain number of bins and voting is done with gradient magnitude. This helps us to study the nature of variation of saturation with variation in Hue and nature of variation of Hue with the variation in saturation. The texture component of our descriptor considers the co-occurrence relationship between the pixels symmetric about both the diagonals of a 3×3 window. Our work is inspired from the work done by Dubey et al.[1]. These two components, viz. color and texture information individually perform better than existing texture and color descriptors. Moreover, when concatenated the proposed descriptors provide significant improvement over existing descriptors for content base color image retrieval. The proposed descriptor has been tested for image retrieval on five databases, including texture image databases MIT VisTex database and Salzburg texture database and natural scene databases Corel 1K, Corel 5K and Corel 10K. The precision and recall values experimented on these databases are compared with some state-of-art local patterns. The proposed method provided satisfactory results from the experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image retrieval based on multi-texton histogram

This paper presents a novel image feature representation method, called multi-texton histogram (MTH), for image retrieval. MTH integrates the advantages of co-occurrence matrix and histogram by representing the attribute of co-occurrence matrix using histogram. It can be considered as a generalized visual attribute descriptor but without any image segmentation or model training. The proposed MT...

متن کامل

Multi Feature Content Based Image Retrieval

There are numbers of methods prevailing for Image Mining Techniques. This Paper includes the features of four techniques I,e Color Histogram, Color moment, Texture, and Edge Histogram Descriptor. The nature of the Image is basically based on the Human Perception of the Image. The Machine interpretation of the Image is based on the Contours and surfaces of the Images. The study of the Image Mini...

متن کامل

Color and Texture Based Image Retrieval Feature Descriptor using Local Mesh Maximum Edge Co-occurrence Pattern

A novel descriptor is designed and developed for extracting the features from large databases. The descriptor is known as LMeMECoP that is local mesh maximum edge co-occurrence patterns. Information of local maximum edge is collected between the possible neighbors for provided centre pixel that is the reference pixel. The maximum edge collection is in the form of mesh intended for reference pix...

متن کامل

Local Differential Excitation Binary Co-occurrence Pattern (LDEBCoP): A New Descriptor for Texture and Bio-Medical Image Retrieval

This paper presents a novel pattern based feature descriptor named as Local Differential Excitation Binary Cooccurrence Pattern (LDEBCoP) for texture and biomedical image retrieval. The proposed method exploits the local structure information using differential excitation. Further, to produce more compact local binary patterns the adjacent neighbourhood pixel pairs are considered in the computa...

متن کامل

Sub - Block based Color Moments , Wavelet and Edge Histogram for Image Retrieval

This paper proposes a novel image retrieval algorithm using local color feature of image sub-block and global texture and shape features. Image sub-blocks are identified by partitioning the image into blocks. Color Texture and shape are the low level image descriptor in Content Based Image Retrieval. These low level image descriptors are used for image representation and retrieval in CBIR. In t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.00879  شماره 

صفحات  -

تاریخ انتشار 2018